Detection of the characteristic pion-decay signature in supernova remnants.
نویسندگان
چکیده
Cosmic rays are particles (mostly protons) accelerated to relativistic speeds. Despite wide agreement that supernova remnants (SNRs) are the sources of galactic cosmic rays, unequivocal evidence for the acceleration of protons in these objects is still lacking. When accelerated protons encounter interstellar material, they produce neutral pions, which in turn decay into gamma rays. This offers a compelling way to detect the acceleration sites of protons. The identification of pion-decay gamma rays has been difficult because high-energy electrons also produce gamma rays via bremsstrahlung and inverse Compton scattering. We detected the characteristic pion-decay feature in the gamma-ray spectra of two SNRs, IC 443 and W44, with the Fermi Large Area Telescope. This detection provides direct evidence that cosmic-ray protons are accelerated in SNRs.
منابع مشابه
Correlation of Supernova Remnant Masers and Gamma-ray Sources
Supernova remnants interacting with molecular clouds are potentially exciting systems in which to detect evidence of cosmic ray acceleration. Prominent γ-ray emission is produced via the decay of neutral pions when cosmic rays encounter the nearby dense clouds. In many of the supernova remnants coincident with γ-ray sources, the presence of OH(1720 MHz) masers is used to identify interaction wi...
متن کاملGamma-ray Production in Supernova Remnants
Supernova remnants are widely believed to be a principal source of galactic cosmic rays, produced by diffusive shock acceleration in the environs of the remnant’s expanding shock. This review discusses recent modelling of how such energetic particles can produce gamma-rays via interactions with the remnants’ ambient interstellar medium, specifically via neutral pion decay, bremsstrahlung and in...
متن کاملTeV Neutrinos from SuperNova Remnants embedded in Giant Molecular Clouds
The recent detection of γ-rays with energy up to 10 TeV from dense regions surrounding some Supernova Remnants (SNR) provides strong, though still not conclusive, evidence that the nucleonic component of galactic Cosmic Rays is accelerated in the supernova outflows. Neutrino telescopes could further support the validity of such scenario by detecting neutrinos coming from the same regions. We re...
متن کاملOn the high energy non-thermal emission from shell-type supernova remnants
Shock waves associated with shell type supernova remnants are considered to be possible sites of cosmic ray acceleration. Since shocks are capable of accelerating electrons in addition to protons one anticipates both species to contribute to the high energy radiation expected from these objects. Adopting a simple model for particle acceleration we calculate in a self-consistent manner the time-...
متن کاملHypernova and Gamma-ray Burst Remnants as Tev Unidentified Sources
We investigate hypernova (hyper-energetic supernova) and gamma-ray burst (GRB) remnants in our Galaxy as TeV gamma-ray sources, particularly in the role of potential TeV unidentified sources, which have no clear counterpart at other wavelengths. We show that the observed bright sources in the TeV sky could be dominated by GRB/hypernova remnants, even though they are fewer than supernova remnant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 339 6121 شماره
صفحات -
تاریخ انتشار 2013